2021
DOI: 10.1002/ail2.61
|View full text |Cite
|
Sign up to set email alerts
|

DARPA's explainableAI(XAI) program: A retrospective

Abstract: Summary of Defense Advanced Research Projects Agency's (DARPA) explainable artificial intelligence (XAI) program from the program managers' and evaluator's perspective.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
33
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 102 publications
(35 citation statements)
references
References 40 publications
1
33
0
1
Order By: Relevance
“…Incorporating these factors will help us better understand the impact of consensus-based explanations on trust and reliance. Some subjects were unable to use some data source tweet (5,8) type of consensus the agent provided. the same. "…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Incorporating these factors will help us better understand the impact of consensus-based explanations on trust and reliance. Some subjects were unable to use some data source tweet (5,8) type of consensus the agent provided. the same. "…”
Section: Resultsmentioning
confidence: 99%
“…To address these issues, the notion of explainable AI (XAI) has gained momentum in recent years. The purpose of XAI, a term coined by DARPA researchers in 2017, is to make AI decision-making and other fundamental behavior more understandable to people by providing a human-parsable explanations [8].…”
Section: Introductionmentioning
confidence: 99%
“…Проблема черного ящика Основная трудность с применением требования разъяснения состоит в том, что многие системы ИИ работают как "черные ящики": они могут быть искусными в выполнении задач, но даже их собственные конструкторы могут быть не в состоянии объяснить, каким образом внутреннии� процесс привел к определенному результату [15].…”
Section: требование четкого разъясненияunclassified
“…In general, there may be several minimal explanations for a particular prediction. Depending on the application domain and target audience, different explanations may be preferable (Gunning et al, 2021). In the medical domain for example, some explanations may require that the target audience has medical training in order to comprehend concepts captured by variables associated with an explanation, while other explanations may be more suitable for patients, albeit more verbose.…”
Section: Definition 2 (Minimal Explanationmentioning
confidence: 99%