Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Context. The dust in planet-forming disks is known to evolve rapidly through growth and radial drift. In the high irradiation environments of massive star-forming regions where most stars form, external photoevaporation also contributes to rapid dispersal of disks. This raises the question of why we still observe quite high disk dust masses in massive star-forming regions. Aims. We test whether the presence of substructures is enough to explain the survival of the dust component and observed millimeter continuum emission in protoplanetary disks located within massive star-forming regions. We also characterize the dust content removed by the photoevaporative winds. Methods. We performed hydrodynamical simulations (including gas and dust evolution) of protoplanetary disks subject to irradiation fields of FUV = 102, 103, and 104 G0, with different dust trap configurations. We used the FRIED grid to derive the mass loss rate for each irradiation field and disk properties, and then proceed to measure the evolution of the dust mass over time. For each simulation we estimated the continuum emission at λ = 1.3 mm along with the radii encompassing 90% of the continuum flux, and characterized the dust size distribution entrained in the photoevaporative winds, in addition to the resulting far-ultraviolet (FUV) cross section. Results. Our simulations show that the presence of dust traps can extend the lifetime of the dust component of the disk to a few millionyears if the FUV irradiation is FUV ≲ 103 G0, but only if the dust traps are located inside the photoevaporative truncation radius. The dust component of a disk will be quickly dispersed if the FUV irradiation is strong (104 G0) or if the substructures are located outside the photoevaporation radius. We do find however, that the dust grains entrained with the photoevaporative winds may result in an absorption FUV cross section of σ ≈ 10−22 cm2 at early times of evolution (<0.1 Myr), which is enough to trigger a self-shielding effect that reduces the total mass loss rate, and slow down the disk dispersal in a negative feedback loop process.
Context. The dust in planet-forming disks is known to evolve rapidly through growth and radial drift. In the high irradiation environments of massive star-forming regions where most stars form, external photoevaporation also contributes to rapid dispersal of disks. This raises the question of why we still observe quite high disk dust masses in massive star-forming regions. Aims. We test whether the presence of substructures is enough to explain the survival of the dust component and observed millimeter continuum emission in protoplanetary disks located within massive star-forming regions. We also characterize the dust content removed by the photoevaporative winds. Methods. We performed hydrodynamical simulations (including gas and dust evolution) of protoplanetary disks subject to irradiation fields of FUV = 102, 103, and 104 G0, with different dust trap configurations. We used the FRIED grid to derive the mass loss rate for each irradiation field and disk properties, and then proceed to measure the evolution of the dust mass over time. For each simulation we estimated the continuum emission at λ = 1.3 mm along with the radii encompassing 90% of the continuum flux, and characterized the dust size distribution entrained in the photoevaporative winds, in addition to the resulting far-ultraviolet (FUV) cross section. Results. Our simulations show that the presence of dust traps can extend the lifetime of the dust component of the disk to a few millionyears if the FUV irradiation is FUV ≲ 103 G0, but only if the dust traps are located inside the photoevaporative truncation radius. The dust component of a disk will be quickly dispersed if the FUV irradiation is strong (104 G0) or if the substructures are located outside the photoevaporation radius. We do find however, that the dust grains entrained with the photoevaporative winds may result in an absorption FUV cross section of σ ≈ 10−22 cm2 at early times of evolution (<0.1 Myr), which is enough to trigger a self-shielding effect that reduces the total mass loss rate, and slow down the disk dispersal in a negative feedback loop process.
In the Orion Nebula Cluster (ONC), protoplanetary disks exhibit ionized gas clouds in the form of a striking teardrop shape as massive stars irradiate the disk material. We present the first spatially and spectrally resolved observations of 12 such objects, known as proplyds, using integral field spectroscopy observations performed with the Multi-Unit Spectroscopic Explorer (MUSE) instrument in Narrow Field Mode (NFM) on the Very Large Telescope (VLT). We present the morphology of the proplyds in seven emission lines and measure the radius of the ionization front (I-front) of the targets in four tracers, covering transitions of different ionization states for the same element. We also derive stellar masses for the targets. The measurements follow a consistent trend of increasing I-front radius for a decreasing strength of the far-UV radiation as expected from photoevaporation models. By analyzing the ratios of the I-front radii as measured in the emission lines of O\ i O\ ii and O\ iii we observe the ionization stratification, that is, the most ionized part of the flow being the furthest from the disk (and closest to the UV source). The ratios of ionization front radii scale in the same way for all proplyds in our sample regardless of the incident radiation. We show that the stratification can help constrain the densities near the I-front by using a 1D photoionization model. We derive the upper limits of photoevaporative mass-loss rates ($ M loss $) by assuming ionization equilibrium, and estimate values in the range 1.07--94.5 times 10$^ $ M$_ yr $, with $ M loss $ values decreasing towards lower impinging radiation. We do not find a correlation between the mass-loss rate and stellar mass. The highest mass-loss rate is for the giant proplyd 244-440. These values of $ M loss $, combined with recent estimates of the disk mass with ALMA, confirm previous estimates of the short lifetime of these proplyds. This work demonstrates the potential of this MUSE dataset and offers a new set of observables to be used to test current and future models of external photoevaporation.
Observational surveys of entire star-forming regions have provided evidence of power-law correlations between the disc-integrated properties and the stellar mass, especially the disc mass ($M_ d M_ star m $) and the accretion rate ($ M M_ star acc $). Whether the secular disc evolution affects said correlations is still a matter of debate: while the purely viscous scenario has been investigated, other evolutionary mechanisms could have a different impact. In this paper, we study the time evolution of the slopes $ m $ and $ acc $ in the wind-driven and viscous-wind hybrid case and compare it to the purely viscous prediction. We use a combination of analytical calculations, where possible, and numerical simulations performed with the 1D population synthesis code Diskpop which we also present and release to the community. Assuming $M_ d M_ star m $ and $ M(0) M_ star acc $ as initial conditions, we find that viscous and hybrid accretion preserve the power-law shape of the correlations, while evolving their slope; on the other hand, magneto-hydrodynamic winds change the shape of the correlations, bending them in the higher or lower end of the stellar mass spectrum depending on the scaling of the accretion timescale with the stellar mass. However, we show how a spread in the initial conditions conceals this behaviour, leading to power-law correlations with evolving slopes as in the viscous and hybrid case. We analyse the impact of disc dispersal, intrinsic in the wind model and due to internal photoevaporation in the viscous case: we find that the currently available sample sizes ($ 30$ discs at 5 Myr) introduce stochastic oscillations in the slopes' evolution, which dominate over the physical signatures. We show that we could mitigate this issue by increasing the sample size: with $ 140$ discs at 5 Myr, corresponding to the complete Upper Sco sample, we would obtain small enough error bars to use the evolution of the slopes as a proxy for the driving mechanism of disc evolution. Finally, from our theoretical arguments, we discuss how the observational claim of steepening slopes necessarily leads to an initially steeper d - M_ star $ correlation with respect to $ M - star
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.