In this study, litigation risk factors were determined for accounting professional liability insurance and an artificial neural network was developed to determine the litigation risks. A training data set comprised of data from 201 policies was used to train an artificial neural network. The performance of the artificial neural network model was then assessed using a test data set comprised of data from 100 policies. In the research, a litigation risk estimation model was formed for liability insurance via an artificial neural network model. By comparing the litigation risks occurring in accounting professional liability insurance to those foreseen by the artificial neural network system, it was determined that the results were quite consistent. It was also determined that the realized results and the risks foreseen in the artificial neural network model provided data close to the real values and that the artificial neural network model could foresee the litigation risks in accounting professional liability insurance with a 99% success rate.
Keywords: Insurance Industry, Litigation Risk, Accounting Professional Liability Insurance, Risk Assessment, Artificial Neural Network.
JEL Classification Codes
94
ÖzÇalışmada muhasebe mesleği sorumluluk sigortalarının hukuki risk faktörleri belirlenerek, hukuki risklerini değerlendiren yapay sinir ağı modeli geliştirilmiştir. Çalışmada yapay sinir ağı yöntemi uygulanmıştır. Muhasebe mesleği sorumluluk sigortalarında gerçekleşen hukuki riskle, yapay sinir ağı yönteminin öngördüğü hukuki risk mukayese edildiğinde sonuçların oldukça uyumlu olduğu tespit edilmiştir. Gerçekleşen sonuçlar ile yapay sinir ağı modelinden elde edilen sonuçların gerçek değerlere çok yakın çıktılar verdiği ve yapay sinir ağı modelinin %99 başarı oranında muhasebe mesleği sorumluluk sigortalarının hukuki risklerinde doğru öngörüde bulunduğu tespit edilmiştir.