Texture softening is a physiological indicator of fruit ripening, which eventually contributes to fruit quality and consumer’s acceptance. Despite great progress has been made in identification of the genes related to fruit softening, the upstream transcriptional regulatory pathways of these softening-related genes are not fully elucidated. Here, a novel bHLH gene, designated as MabHLH28, was identified because of its significant upregulation in banana fruit ripening. DAP-Seq analysis revealed that MabHLH28 bound to the core sequence of ‘CAYGTG’ presented in promoter regions of fruit softening-associated genes, such as the genes related to cell wall modification (MaPG3, MaPE1, MaPL5, MaPL8, MaEXP1, MaEXP2, MaEXPA2 and MaEXPA15) and starch degradation (MaGWD1 and MaLSF2), and these bindings were validated by EMSA and DLR assays. Transient overexpression and knockdown of MabHLH28 in banana fruit resulted in up- and down-regulation of softening-related genes, thereby hastening and postponing fruit ripening. Furthermore, overexpression of MabHLH28 in tomato accelerated the ripening process by elevating the accumulation of softening-associated genes. In addition, MabHLH28 showed interaction withMaWRKY49/111 and itself to form protein complexes, which could combinatorically strengthen the transcription of softening-associated genes. Taken together, our findings suggest that MabHLH28 mediates fruit softening by upregulating the expression of softening-related genes either alone or in combination with MaWRKY49/111.