Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and, in its advanced stages, has a 5-year survival rate of only 3% to 5%. Despite novel mechanisms and treatments being uncovered over the past few years, effective strategies for HCC are currently limited. Previous studies have proven that aconite can suppress tumor growth and progression and prevent the recurrence and metastasis of multiple cancers, but the underlying molecular mechanisms are largely unknown. In this study, different doses of aconite were applied to mice bearing subcutaneous HCC tumors. It was found that aconite had a therapeutic effect on H22 tumor-bearing mice in a dose-dependent manner by reducing tumor volumes and prolonging survival times, which could be attributed to the immunoregulatory effect of aconite. Furthermore, results showed that high-dose administration of aconite could enhance adaptive immunity and natural killer (NK) cell-mediated immunity by regulating the secretion of interferon-γ, upregulating T cells and NK cells, and modulating the expression of the NK cytotoxicity biomarker CD107a and the inhibitory receptor TIGIT. This study revealed a novel mechanism through which aconite exerts antitumor effects, not merely through apoptosis induction pathways, providing more sound evidence that aconite has the potential to be developed into an effective anti-HCC agent.