Thyroid cancer (TC) is a prevalent endocrine malignancy, with a significant increase in incidence worldwide. Ferroptosis is a novel form of programmed cell death, primarily caused by iron overload and reactive oxygen species (ROS)‐dependent accumulation of lipid peroxides. The main manifestations of cellular ferroptosis are rupture of the outer membrane, crumpling of the mitochondria and shrinkage or disappearance of the mitochondrial cristae, thus leading to cell death. Ferroptosis is an important phenomenon in tumour progression, with crosstalk with tumour‐associated signalling pathways profoundly affecting tumour progression, immune effects and treatment outcomes. The functions and mechanisms of ferroptosis in TC have also attracted increasing attention, mainly in terms of influencing tumour proliferation, invasion, migration, immune response, therapeutic susceptibility and genetic susceptibility. However, at present, the tumour biology of the morphological, biological and mechanism pathways of ferroptosis is much less deep in TC than in other malignancies. Hence, in this review, we highlighted the emerging role of ferroptosis in TC progression, including the novel mechanisms and potential opportunities for diagnosis and treatment, as well as discussed the limitations and prospects. Ferroptosis‐based diagnostic and therapeutic strategies can potentially provide complementary management of TCs.