2023
DOI: 10.48550/arxiv.2301.07722
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Scrambling in quantum cellular automata

Abstract: Scrambling is the delocalization of quantum information over a many-body system and underlies all quantum-chaotic dynamics. We employ discrete quantum cellular automata as classically simulable toy models of scrambling. We observe that these automata break ergodicity, i.e. they exhibit quantum scarring. We also find that the time-scale of scrambling rises with the local Hilbert-space dimension and obeys a specific combinatorial pattern. We then show that scarring is mostly suppressed in a semiclassical limit, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 48 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?