Planococcus halocryophilus OR1 is a bacterial isolate capable of growth at temperatures ranging from -15 to +37 °C. During sub-zero (cryophilic) growth, nodular features appear on its cell surface; however, the biochemical compositions of these features as well as any cold-adaptive benefits they may offer are not understood. This study aimed to identify differences in the cell surface proteome (surfaceome) of P. halocryophilus cells grown under optimal (24 °C, no added salt), low- and mid-salt (5 and 12 % NaCl, respectively) at 24 °C, and low- and mid-salt sub-zero (5 % NaCl at -5 °C and 12 % NaCl at -10 °C) culture conditions, for the purpose of gaining insight into cold-adapted proteomic traits at the cell surface. Mid-log cells were harvested, treated briefly with trypsin and the resultant peptides were purified followed by identification by LC-MS/MS analysis. One hundred and forty-four proteins were subsequently identified in at least one culture condition. Statistically significant differences in amino acid usage, a known indicator of cold adaptation, were identified through in silico analysis. Two proteins with roles in peptidoglycan (PG) metabolism, an N-acetyl-L-alanine amidase and a multimodular transpeptidase-transglycosylase, were detected, though each was only detected under optimal conditions, indicating that high-salt and high-cold stress each affect PG metabolism. Two iron transport-binding proteins, associated with two different iron transport strategies, were identified, indicating that P. halocryophilus uses a different iron acquisition strategy at very low temperatures. Here we present the first set of data that describes bacterial adaptations at the cellular surface that occur as a cryophilic bacterium is transitioned from optimal to near-inhibitory sub-zero culture conditions.