In plant DNA, cytosines in symmetric CpG and CpNpG (N is A, T, or C) are thought to be methylated by DNA methyltransferases, MET1 and CMT3, respectively. Cytosines in asymmetric CpNpN are also methylated, and genetic analysis has suggested the responsible enzyme to be domains rearranged methyltransferase (DRM). We cloned a tobacco cDNA, encoding a novel protein consisting of 608 amino acids, that resembled DRMs found in maize and Arabidopsis and designated this as Nt-DRM1. The protein could be shown to be localized exclusively in the nucleus and exhibit methylation activity toward unmethylated synthetic as well as native DNA samples upon expression in Sf9 insect cells. It also methylated hemimethylated DNA, but the activity was lower than that for unmethylated substrates. Methylation mapping of a 962-bp DNA, treated with NtDRM1 in vitro, directly demonstrated methylation of ϳ70% of the cytosines in methylatable CpNpN and CpNpG sequences but only 10% in CpG. Further analyses indicated that the enzyme apparently non-selectively methylates any cytosines except in CpG, regardless of the adjacent nucleotide at both 5 and 3 ends. Transcripts of NtDRM1 ubiquitously accumulated in all tissues and during the cell cycle in tobacco cultured BY2 cells. These results indicate that NtDRM1 is a de novo cytosine methyltransfease, which actively excludes CpG substrate.The most commonly modified base in DNA among the eukaryotes through animals and plants is 5-methylcytosine (m 5 C).