Scrub typhus is a poorly studied but life-threatening disease caused by the intracellular bacterium Orientiatsutsugamushi (Ot). Cellular and humoral immunity in Ot-infected patients is not long-lasting, waning as early as one-year post-infection; however, its underlying mechanisms remain unclear. To date, no studies have examined germinal center (GC) or B cell responses in Ot-infected humans or experimental animals. This study was aimed at evaluating humoral immune responses at acute stages of severe Ot infection and possible mechanisms underlying B cell dysfunction. Following inoculation with Ot Karp, a clinically dominant strain known to cause lethal infection in C57BL/6 mice, we measured antigen-specific antibody titers, revealing IgG2c as the dominant isotype induced by infection. Splenic GC responses were evaluated by immunohistology, co-staining for B cells (B220), T cells (CD3), and GCs (GL-7). Organized GCs were evident at day 4 post-infection (D4), but they were nearly absent at D8, accompanied by scattered T cells throughout splenic tissues. Flow cytometry revealed comparable numbers of GC B cells and T follicular helper (Tfh) cells at D4 and D8, indicating that GC collapse was not due to excessive death of these cell subtypes at D8. B cell RNAseq analysis revealed significant differences in expression of genes associated with B cell adhesion and co-stimulation at D8 versus D4. The significant downregulation of S1PR2 (a GC-specific adhesion gene) was most evident at D8, correlating with disrupted GC formation. Signaling pathway analysis uncovered downregulation of 71% of B cell activation genes at D8, suggesting attenuation of B cell activation during severe infection. This is the first study showing the disruption of B/T cell microenvironment and dysregulation of B cell responses during Ot infection, which may help understand the transient immunity associated with scrub typhus.