SDDSynergy: Learning Important Molecular Substructures for Explainable Anticancer Drug Synergy Prediction
Yunjiong Liu,
Peiliang Zhang,
Chao Che
et al.
Abstract:Drug combination therapies are well-established strategies for the treatment of cancer with low toxicity and fewer adverse effects. Computational drug synergy prediction approaches can accelerate the discovery of novel combination therapies, but the existing methods do not explicitly consider the key role of important substructures in producing synergistic effects. To this end, we propose a significant substructure-aware anticancer drug synergy prediction method, named SDDSynergy, to adaptively identify critic… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.