The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.
AbstractBecause air-water and water-air interfaces are equally refractive, cloud droplets and microbubbles dispersed in bodies of water reflect sunlight in much the same way. The lifetime of sunlight-reflecting microbubbles, and hence the scale on which they may be applied, depends on Stokes Law and the influence of ambient or added surfactants. Small bubbles backscatter light more efficiently than large ones, opening the possibility of using highly dilute micron-radius hydrosols to substantially brighten surface waters. Such microbubbles can noticeably increase water surface reflectivity, even at volume fractions of parts per million and such loadings can be created at an energy cost as low as J m -2 to initiate and milliwatts m -2 to sustain. Increasing water albedo in this way can reduce solar energy absorption by as much as 100 W m -2 , potentially reducing equilibrium temperatures of standing water bodies by several Kelvins. While aerosols injected into the stratosphere tend to alter climate globally, hydrosols can be used to modulate surface albedo, locally and reversibly, without risk of degrading the ozone layer or altering the color of the sky. The low energy cost of microbubbles suggests a new approach to solar radiation management in water conservation and geoengineering: Don't dim the Sun; Brighten the water.