The spaceborne interferometric synthetic aperture radar (InSAR) is expected to measure the sea surface height (SSH) with high accuracy over a wide swath. Since centimeter-level accuracy is required to monitor the ocean sub-mesoscale dynamics, the high accuracy implies that the altimetric errors should be totally understood and strictly controlled. However, for the dynamic waves, they move randomly all the time, and this will lead to significant altimetric errors. This study proposes an analytical method for the dynamic wave-related errors of InSAR SSH measurement based on the wave spectrum and electromagnetic scattering model. Additionally, the mechanisms of the dynamic wave-related errors of InSAR altimetry are analyzed, and the detailed numerical model is derived. The proposed analytical method is validated with NASA’s Surface Water and Ocean Topography (SWOT) project error budget, and the Root-Mean-Square Errors (RMSEs) are in good agreement (0.2486 and 0.2470 cm on a 0.5 km2 grid, respectively). Instead of analysis for a typical project, the proposed method can be applied to different radar parameters under multiple sea states. The RMSEs of Ka-band under low sea state, moderate sea state, and high sea state are 0.2670, 1.3154, and 6.6361 cm, respectively. Moreover, the RMSEs of X-band and Ku-band are also simulated and presented. The experimental results demonstrate that the dynamic wave-related errors of InSAR altimetry are not sensitive to the frequencies but are sensitive to the sea states. The error compensation method is necessary for moderate and higher sea states for centimetric accuracy requirements. This can provide feasible suggestions on system design and error budget for the future interferometric wide-swath altimeter.