2017 International Conference on Digital Arts, Media and Technology (ICDAMT) 2017
DOI: 10.1109/icdamt.2017.7904928
|View full text |Cite
|
Sign up to set email alerts
|

Sea Surface Temperature estimation from satellite observations and in-situ measurements using multifidelity Gaussian Process regression

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 9 publications
0
1
0
Order By: Relevance
“…For the sake of brevity we present the linear formulation for two fidelity levels (Babaee et al, ; Kennedy & O'Hagan, ; Prempraneerach et al, ); however, the formulation can be extended to n>2 levels of fidelity in a straightforward manner (see e.g., Forrester et al, ) and to nonlinear autoregressive schemes using deep GP (see Perdikaris et al, ). To this end, we consider the low‐fidelity (L) and high‐fidelity (H) observations to be of the form yLfalse(xfalse)=uLfalse(xfalse)+ϵL1emand1emyHfalse(xfalse)=ρuLfalse(xfalse)+δfalse(xfalse)+ϵH, where x=false{x1,x2,,xDfalse} represents the D‐dimensional input space.…”
Section: Multifidelity Modelingmentioning
confidence: 99%
“…For the sake of brevity we present the linear formulation for two fidelity levels (Babaee et al, ; Kennedy & O'Hagan, ; Prempraneerach et al, ); however, the formulation can be extended to n>2 levels of fidelity in a straightforward manner (see e.g., Forrester et al, ) and to nonlinear autoregressive schemes using deep GP (see Perdikaris et al, ). To this end, we consider the low‐fidelity (L) and high‐fidelity (H) observations to be of the form yLfalse(xfalse)=uLfalse(xfalse)+ϵL1emand1emyHfalse(xfalse)=ρuLfalse(xfalse)+δfalse(xfalse)+ϵH, where x=false{x1,x2,,xDfalse} represents the D‐dimensional input space.…”
Section: Multifidelity Modelingmentioning
confidence: 99%