2022
DOI: 10.3847/1538-4357/ac7a3f
|View full text |Cite
|
Sign up to set email alerts
|

Search for Supernova Neutrinos and Constraint on the Galactic Star Formation Rate with the KamLAND Data

Abstract: We present the results of a search for core-collapse supernova neutrinos, using long-term KamLAND data from 2002 March 9 to 2020 April 25. We focus on the electron antineutrinos emitted from supernovae in the energy range of 1.8–111 MeV. Supernovae will make a neutrino event cluster with the duration of ∼10 s in the KamLAND data. We find no neutrino clusters and give the upper limit on the supernova rate to be 0.15 yr−1 with a 90% confidence level. The detectable range, which corresponds to a >95% detection… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 39 publications
0
4
0
Order By: Relevance
“…Several neutrino detectors have searched for nearby CC-SNe in the last decades, e.g. water Cherenkov detectors (Ahrens et al 2002;Ikeda et al 2007;Abbasi et al 2011;Aiello et al 2022), scintillator detectors (Ambrosio et al 2004;Novoseltsev et al 2020;Agafonova et al 2015;Aharmim et al 2011;Rumleskie & Virtue 2020;Abe et al 2022;Acero et al 2021), lead-based detectors (Rosso 2021), as well as liquid noble gas neutrino (Abi et al 2021) and dark matter detectors (Lang et al 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Several neutrino detectors have searched for nearby CC-SNe in the last decades, e.g. water Cherenkov detectors (Ahrens et al 2002;Ikeda et al 2007;Abbasi et al 2011;Aiello et al 2022), scintillator detectors (Ambrosio et al 2004;Novoseltsev et al 2020;Agafonova et al 2015;Aharmim et al 2011;Rumleskie & Virtue 2020;Abe et al 2022;Acero et al 2021), lead-based detectors (Rosso 2021), as well as liquid noble gas neutrino (Abi et al 2021) and dark matter detectors (Lang et al 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Several neutrino detectors have searched for nearby CCSNe in the last decades or have provided their sensitivity, e.g., water Cherenkov detectors (Ahrens et al 2002;Abbasi et al 2011;Aiello et al 2021;Mori et al 2022), scintillator detectors (Ambrosio et al 2004;Aharmim et al 2011;Agafonova et al 2015;Novoseltsev et al 2020;Rumleskie & Virtue 2020;Acero et al 2021;Abe et al 2022), and lead-based detectors (Rosso 2021), as well as liquid noble gas neutrino (Abi et al 2021) and dark matter detectors (Lang et al 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Among the currently running experiments, Super-Kamiokande (Japan), with the addition of Gd [46], can detect the highest number of SN neutrino events. Among the liquid scintillator detectors, KamLAND (Japan) [47] offer the best products for the detection of these neutrinos. The IceCube detector at the South Pole does not have enough sensitivity to detect individual events, but it can observe an SN burst as a correlated rise of background noise [48].…”
Section: Introductionmentioning
confidence: 99%