The interrelating dynamics of the primary tumor cells and their surrounding microenvironment might determine phenotypic characteristics of disseminated tumor cells and contribute to cancer metastasis. Cytoprotective mechanisms (e.g., energy metabolism control, DNA damage response, global translation control and unfolded protein response) exert selective pressure in the tumor microenvironment. In particular, adaptation to hypoxia is vital for survival of malignant cells in the tumor and at distant sites such as the bone marrow. In addition to the stress response, the ability of tumor cells to undergo certain cellular re-differentiation programmes like the epithelial-mesenchymal transition (EMT), which is linked to cancer stemness, appears to be important for successful cancer cell spread. Here we will discuss the selection pressures that eventually lead to the formation of overt metastases. We will focus the properties of the microenvironment including (i) metabolic and cytoprotective programs that ensure survival of disseminated tumor cells, (ii) blood vessel structure, and (iii) the hypoxianormoxia switch as well as intrinsic factors affecting the evolvement of novel tumor cell populations.