Gas-abrasive wear resistance of silicon carbonitride SiC x N y H z and boron carbonitride BC x N y films obtained by chemical vapor deposition (CVD) method was studied. Wear resistance tests were carried out in a flux of sand particles falling on the samples under the gravity action. Scanning electron microscopy, scanning probe microscopy, ellipsometry and spectrophotometry were used to detect the surface modifications occurred during this treatment. In addition, early published data on the physical and chemical properties of the films are involved for interpreting the results of gas-abrasive tests. The SiC x N y H z films were obtained by plasma-enhanced CVD from the mixture of hexamethyldisilazane vapor and helium at deposition temperatures 100 -800°C and pressure 0.05 Torr. It was found that gas-abrasive wear resistance of the films increased with the deposition temperature due to the changes in a chemical composition of the films towards the hard SiC x N y material. BC x N y films were synthesized by low-pressure CVD from triethylamine borane vapor and its mixture with ammonia (ratio of partial pressures 1 : 1). Deposition temperature was 700°C. There is a difference in destruction mechanisms of the films deposited from these compositions of the initial gas mixture. The surface of films synthesized from triethylamine borane vapor and treated with sand particles shows destroyed and undamaged areas similar to the SiC x N y H z films. When ammonia is added to the initial gas mixture, the surface of the treated films acquires a specific appearance with lots of scratches. These changes are associated with a decrease in the hardness and Young's modulus of the BC x N y films due to the nitrogen concentration enhancement.