Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BACKGROUND <i>Helicobacter pylori</i> plays a central role in the development of gastric cancer, and prediction of <i>H pylori</i> infection by visual inspection of the gastric mucosa is an important function of endoscopy. However, there are currently no established methods of optical diagnosis of <i>H pylori</i> infection using endoscopic images. Definitive diagnosis requires endoscopic biopsy. Artificial intelligence (AI) has been increasingly adopted in clinical practice, especially for image recognition and classification. OBJECTIVE This study aimed to evaluate the diagnostic test accuracy of AI for the prediction of <i>H pylori</i> infection using endoscopic images. METHODS Two independent evaluators searched core databases. The inclusion criteria included studies with endoscopic images of <i>H pylori</i> infection and with application of AI for the prediction of <i>H pylori</i> infection presenting diagnostic performance. Systematic review and diagnostic test accuracy meta-analysis were performed. RESULTS Ultimately, 8 studies were identified. Pooled sensitivity, specificity, diagnostic odds ratio, and area under the curve of AI for the prediction of <i>H pylori</i> infection were 0.87 (95% CI 0.72-0.94), 0.86 (95% CI 0.77-0.92), 40 (95% CI 15-112), and 0.92 (95% CI 0.90-0.94), respectively, in the 1719 patients (385 patients with <i>H pylori</i> infection vs 1334 controls). Meta-regression showed methodological quality and included the number of patients in each study for the purpose of heterogeneity. There was no evidence of publication bias. The accuracy of the AI algorithm reached 82% for discrimination between noninfected images and posteradication images. CONCLUSIONS An AI algorithm is a reliable tool for endoscopic diagnosis of <i>H pylori</i> infection. The limitations of lacking external validation performance and being conducted only in Asia should be overcome. CLINICALTRIAL PROSPERO CRD42020175957; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=175957
BACKGROUND <i>Helicobacter pylori</i> plays a central role in the development of gastric cancer, and prediction of <i>H pylori</i> infection by visual inspection of the gastric mucosa is an important function of endoscopy. However, there are currently no established methods of optical diagnosis of <i>H pylori</i> infection using endoscopic images. Definitive diagnosis requires endoscopic biopsy. Artificial intelligence (AI) has been increasingly adopted in clinical practice, especially for image recognition and classification. OBJECTIVE This study aimed to evaluate the diagnostic test accuracy of AI for the prediction of <i>H pylori</i> infection using endoscopic images. METHODS Two independent evaluators searched core databases. The inclusion criteria included studies with endoscopic images of <i>H pylori</i> infection and with application of AI for the prediction of <i>H pylori</i> infection presenting diagnostic performance. Systematic review and diagnostic test accuracy meta-analysis were performed. RESULTS Ultimately, 8 studies were identified. Pooled sensitivity, specificity, diagnostic odds ratio, and area under the curve of AI for the prediction of <i>H pylori</i> infection were 0.87 (95% CI 0.72-0.94), 0.86 (95% CI 0.77-0.92), 40 (95% CI 15-112), and 0.92 (95% CI 0.90-0.94), respectively, in the 1719 patients (385 patients with <i>H pylori</i> infection vs 1334 controls). Meta-regression showed methodological quality and included the number of patients in each study for the purpose of heterogeneity. There was no evidence of publication bias. The accuracy of the AI algorithm reached 82% for discrimination between noninfected images and posteradication images. CONCLUSIONS An AI algorithm is a reliable tool for endoscopic diagnosis of <i>H pylori</i> infection. The limitations of lacking external validation performance and being conducted only in Asia should be overcome. CLINICALTRIAL PROSPERO CRD42020175957; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=175957
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.