Abstract-Polar sea ice characteristics provide important inputs to models of several geophysical processes. Microwave scatterometers are ideal for monitoring these regions due to their sensitivity to ice properties and insensitivity to atmospheric distortions. Many forward electromagnetic scattering models have been proposed to predict the normalized radar cross section ( ) from sea ice characteristics. These models are based on very small scale ice features and generally assume that the region of interest is spatially homogeneous. Unfortunately, spaceborne scatterometer footprints are very large (5-50 km) and usually contain very heterogeneous mixtures of sea ice surface parameters. In this paper, we use scatterometer data in a large-scale inverse modeling experiment. Given the limited data resolution, we adopt a simple geometric optics for