The dseason of birthT effect is one of the most consistently replicated associations in schizophrenia epidemiology. In contrast, the association between season of birth and development in the general population is relatively poorly understood. The aim of this study was to explore the impact of season of birth on various anthropometric and neurocognitive variables from birth to age seven in a large, community-based birth cohort. A sample of white singleton infants born after 37 weeks gestation (n = 22,123) was drawn from the US Collaborative Perinatal Project. Anthropometric variables (weight, head circumference, length/height) and various measures of neurocognitive development, were assessed at birth, 8 months, 4 and 7 years of age. Compared to summer/autumn born infants, winter/spring born infants were significantly longer at birth, and at age seven were significantly heavier, taller and had larger head circumference. Winter/spring born infants were achieving significantly higher scores on the Bayley Motor Score at 8 months, the Graham-Ernhart Block Test at age 4, the Wechsler Intelligence Performance and Full Scale scores at age 7, but had significantly lower scores on the Bender-Gestalt Test at age 7 years. Winter/spring birth, while associated with an increased risk of schizophrenia, is generally associated with superior outcomes with respect to physical and cognitive development. D