Climate—Madeira Strategy (CMS) foresees two models to describe the climate scenarios for the Madeira region in 2050 and 2070. These scenarios anticipate an average temperature rise of 1.4 to 3.7 °C and a decrease in precipitation by 30 to 40%. Consequently, Madeira’s agriculture will suffer the impacts of climate change. To understand these impacts, a baseline of major agrosystem components needs to be established, with the ultimate goal to monitor its consequences in its functioning. CASBio project used the 1961–1991 and 2010–2020 meteorological data series to modulate climate conditions and characterize and monitor six agrosystems for 2 years. One of them was a vineyard, Quinta das Vinhas, representing a typical agrosystem in the Mediterranean climate. The annual and seasonal variation in climatic parameters, soil conditions, microbiological communities, floristic and insect diversity, and crop production was assessed, using a total of 50 parameters. The results were used to establish a baseline of the agrosystem components and their seasonal and annual variation. The major findings are: (i) winter and summer extreme events show a trend in temperature and precipitation supporting a fast change in climate; (ii) a critical imbalance between nitrogen-fixing and denitrifying bacteria was identified, especially in summer, that could be determined by the rise in temperature and drought; (iii) among floristic diversity, the therophytes and geophytes confirm to be the most suitable indicators for the rise in temperature and reduction in precipitation in the agrosystems; (iv) an imbalance in favor of C. capitata plague was observed, associated with the summer rise in temperature and decrease in precipitation; (v) despite an increase in most of the grape varieties production, the Madeiran wine local varieties were shown to be less stable in productivity under observed climate conditions. The agrosystem baseline is a starting point for long-term monitoring and allows for further quantifying the influence of climate change on agrosystem productivity, resilience, and sustainability.