Abstract. In this paper, we review observational and modelling results on the upwelling in the inner tropical Atlantic. We focus on the physical processes that drive the seasonal variability of surface cooling and upward nutrient flux required to explain the seasonality of primary productivity. We separately consider the equatorial upwelling system, the northern coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system. For the equatorial regime, we discuss the forcing of upwelling velocity and turbulent mixing as well as the underlying dynamics responsible for thermocline movements and current structure. The coastal upwelling system in the Gulf of Guinea is concentrated along northern boundary and is driven by both, local and remote forcing. The particular role of the Guinea Current, nonlinearity and the shape of the coastline are emphasized. For the tropical Angolan upwelling, we show that this system is not wind-driven, but instead results from the combined effect of coastally trapped waves, surface heat and freshwater fluxes, and turbulent mixing. Finally, we review recent changes in the upwelling systems associated with climate variability and global warming and address possible responses of upwelling systems in future scenarios.