Fish processing provides waste of around 50.0% to 70.0% of the animal's initial weight, especially the skin. Thus, this residue contains the by-product that allows biopolymers to be obtained, highlighting collagen, which can be widely used in different areas. The present study aimed to evaluate the yield of collagen extracted from peacock bass Cichla monoculus skin and to characterize them physicochemically. Twenty-five peacock bass with an average weight of 646 ± 175 g were used. The skin samples were removed by manual filleting and weighed, with an average yield of 3.7%. Subsequently, such models were analyzed for chemical composition, showing 61.8% for moisture, 29.3% for crude protein, 1.5% for ash, 6.3% for total lipids, and 1.2% for non-nitrogenous extract (NNE). Acid-soluble collagen (ASC) presented an average yield of 8.2%, presenting in its analysis of centesimal composition 12.5% of moisture, 82.6% of crude protein, 1.1% of ash, 2.6% of total lipids, and 1.2% NNE. The skin and collagen extracted from the tucunaré skin have technological potential for use in the preparation of products, adding value to these by-products from fish processing.