Intensive livestock grazing can largely deplete the natural fodder resources in semi-arid, subtropical highlands and together with the low nutritional quality of the pasture vegetation limit the growth and production of grazing animals. To evaluate the contribution of homestead feeding of grazing goats to rangeland conservation and animal nutrition, two researcher-managed on-farm trials were conducted in a mountain oasis of Northern Oman. Goats' feed intake on pasture in response to four rations containing different levels of locally available green fodder and concentrate feeds was determined in six male goats each (35 6 10.2 kg body weight (BW)). Total feed intake was estimated using titanium dioxide as external fecal marker as well as the diet organic matter (OM) digestibility derived from fecal crude protein concentration. The nutritional quality of selected fodder plants on pasture was analyzed to determine the animals' nutrient and energy intake during grazing. The pasture vegetation accounted for 0.46 to 0.65 of the goats' total OM intake (87 to 107 g/kg 0.75 BW), underlining the importance of this fodder resource for the husbandry system. However, metabolizable energy (7.2 MJ/kg OM) and phosphorus concentrations (1.4 g/kg OM) in the consumed pasture plants were low. Homestead feeding of nutrient and energy-rich by-products of the national fishery and date palm cultivation to grazing goats increased their daily OM intake ( R 2 5 0.36; P 5 0.005) and covered their requirements for growth and production. While the OM intake on pasture was highest in animals fed a concentrate-based diet ( P 5 0.003), the daily intake of 21 g OM/kg 0.75 BW of cultivated green fodder reduced the animals' feed intake on pasture ( R 2 5 0.44; P 5 0.001). Adjusting homestead supplementation with locally available feedstuffs to the requirements of individual goats and to the nutritional quality of the pasture vegetation improves animal performance and eases the grazing pressure exerted on the natural vegetation. This management strategy therefore appears to be a valuable alternative to intensive livestock feeding in zero-grazing systems and may contribute to sustainable livestock production in ecologically fragile, semi-arid mountain regions.