Objective
Campylobacter species are major causes of foodborne illnesses, with unpasteurized milk being a significant carrier of these bacteria, posing a public health risk. One of the challenges in managing Campylobacter infections is the emergence and spread of antibiotic resistance. We conducted a study in Qazvin, Iran, testing 84 raw cow’s milk samples to determine the frequency of C. jejuni and C. coli using culture-based and multiplex PCR methods. Additionally, the disk diffusion and RAPD-PCR approaches were utilized to evaluate the phenotypic antibiotic resistance profile and genetic diversity of Campylobacter strains.
Results
The findings indicated that Campylobacter spp. was present in 19.05% of the samples, with C. coli being the predominant isolate. We tested eight antibiotic agents, and the resistance levels of the isolates were as follows: erythromycin 100%, tetracycline 75%, doxycycline 56.25%, ceftriaxone 43.75%, chloramphenicol 37.5%, amoxicillin-clavulanic acid 25%, nalidixic acid 12.5%, and azithromycin 6.25%. Genetic diversity analysis categorized Campylobacter isolates into 39 clusters, indicating a wide diversity among strains. However, no significant correlation was observed between antibiotic resistance and cluster patterns. These findings underscore the role of raw milk as a reservoir for Campylobacter spp. and highlight the substantial antibiotic resistance and genetic diversity within the species population.