Aluminum oxide nanoparticles have recently been applied to water treatment as adsorbents by researchers. In this study, aluminum oxide nanoparticles (AlONPs) were synthesized using scrap aluminum foil through a straightforward, inexpensive, and green approach, and their performance in adsorbing lead (II) ions from an aqueous solution was assessed. The synthesized nanoparticles were characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDX) to analyze their bonding nature, particle size, phase composition, and surface morphology. They exhibited an average particle size of 32.73 nm, consisting predominantly of γ-Al2O3, with small amounts of α-Al2O3 and a minor unknown phase. The lead adsorption efficiency was evaluated under optimized parameters, including pH, contact time, and doses of both adsorbate and adsorbent. The results demonstrated that the AlONPs achieved a 98% removal efficiency within 30 minutes of contact time at a pH of 5.5. Additionally, the Freundlich adsorption isotherm model (R² value of 0.9972) and the pseudo-second-order kinetic model (qe) value of 37.97 mg/g) were shown to fit the lead adsorption process better than other models. Hence, the synthesized AlONPs offer potential as nanoparticle adsorbents for removing lead (II) ions from aqueous solutions.