As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne.Fourier transform ͉ ion cyclotron resonance ͉ MS ͉ bubbles ͉ surfactants I n surfactant solutions, preferential adsorption of surfactants at the air-solution interface occurs as a result of the amphiphilic properties of surfactants, with the water-soluble moiety plunging into the solution and the hydrophobic component in contact with the air. In oceanography, enrichment of the sea-surface microlayer and atmospheric aerosols in surfactant materials has long been studied (1-3). Actually, bubbles trapped by the sea breakers action considerably increase exchange surfaces between the sea bulk and the atmosphere. Bubbles drag surfactants along their way through the liquid bulk, reach the sea surface, to finally burst and eject aerosol droplets into the atmosphere. Air bubbles trapped during rough sea conditions were found to increase specific organic concentrations in marine aerosols by several orders of magnitude compared with those found in the liquid bulk (4).From a conceptual point of view, the situation found in glasses poured with champagne or sparkling wine is quite similar to that described above. Nevertheless, only quite recently, the tools of physical chemistry were used to identify the physical mechanisms behind the nucleation, rise, and collapse of bubbles found in champagne and sparkling wines (5-7). From a strictly chemical point of view, Champagne and sparkling wines are multicomponent hydro-alcoholic solutions supersaturated with CO 2 -dissolved gas molecules (formed together with ethanol during the fermentation process). Champagne and sparkling wines also hold hundreds of surface active compounds, some of them showing organoleptic interest. As soon as a bottle of champagne or sparkling wine is uncorked, the progressive release of CO 2 -dissolved gas molecules is responsible for bubble nucleation, the so-called effervescence process. It is worth noting that Ϸ5 L of CO 2 must escape from a typical 0.75 L champagne bottle. To get an idea of how many bubbles are potentially involved all along the degassing proces...