The effect of land use change from agricultural to short rotation woody crops on soil respiration and its temperature sensitivity is not fully understood. We studied the effect of land use change on soil respiration, in a factorial experiment, 4 years after converting an agricultural field to a Walker poplar (Populus deltoides × Populus × petrowskyana var. Walker) plantation in the boreal region of northeastern Alberta. Overall, total soil respiration was greater in the agricultural plots (planted to alfalfa, Medicago sativa L.) than in the poplar plots. Soil respiration and soil temperature at the 10-cm depth in both land uses had similar seasonal and diurnal variations. The season-long temperature sensitivity (Q 10 ) of daily and nighttime soil respiration in the alfalfa plots was greater than that in the poplar plots, with Q 10 values of 5.4 vs. 4.9, respectively. Our data also show that, 4 years after land use conversion, the heterotrophic respiration was smaller in the poplar plots than in the adjacent agricultural plots, indicating potential benefits of plantation establishment in reducing heterotrophic respiration. However, the temperature sensitivity of soil respiration based on monthly nighttime rates, which minimizes the plant phenological influences, was greater in the poplar plantation, suggesting that soil respiration could become greater in the poplar plantation under a future warmer climate. We conclude that establishment of poplar plantations, which are known to have a fast rate of biomass production for long-term carbon storage, may help mitigate climate change by reducing heterotrophic and total soil respiration in the Canadian boreal region, but the long-term implications (e.g., changes in the temperature sensitivity of soil respiration over time) need to be further studied.