We conducted a large-scale gene expression screen using the 3,200 cDNA probe microarray developed specifically for Ursus americanus to detect expression differences in liver and skeletal muscle that occur during winter hibernation compared with animals sampled during summer. The expression of 12 genes, including RNA binding protein motif 3 (Rbm3), that are mostly involved in protein biosynthesis, was induced during hibernation in both liver and muscle. The Gene Ontology and Gene Set Enrichment analysis consistently showed a highly significant enrichment of the protein biosynthesis category by overexpressed genes in both liver and skeletal muscle during hibernation. Coordinated induction in transcriptional level of genes involved in protein biosynthesis is a distinctive feature of the transcriptome in hibernating black bears. This finding implies induction of translation and suggests an adaptive mechanism that contributes to a unique ability to reduce muscle atrophy over prolonged periods of immobility during hibernation. Comparing expression profiles in bears to small mammalian hibernators shows a general trend during hibernation of transcriptional changes that include induction of genes involved in lipid metabolism and carbohydrate synthesis as well as depression of genes involved in the urea cycle and detoxification function in liver. gene expression; hibernation; translation; RNA binding protein motif 3 MAMMALIAN HIBERNATION IS a physiological and behavioral adaptation involving a coordinated suppression of heat production and body temperature wherein whole body metabolism and energy demand are significantly reduced over several days to several months. During hibernation, heart and respiration rates, blood flow, and oxygen consumption decrease dramatically to Ͻ10% of normal or basal rates (2, 4). These physiological changes do not represent a loss of homeostasis but instead are precisely controlled and spontaneously reversible, and they allow individual animals to survive highly seasonal or unpredictable environments where food availability becomes lacking (7, 12). The molecular and genetic basis of hibernation in small mammals has only recently begun to be described, and little is known about its evolutionary history. Hibernating species have been found in diverse families among seven orders of mammals (26), however, and the interspersed phylogenetic distribution of hibernating and nonhibernating species has led to the hypothesis that rather than requiring the creation of novel gene products, hibernation results from the differential expression of genes that exist widely among mammals (35).Microarray technology provides powerful means for the unbiased detection of differences in expression of thousands of genes in a single hybridization experiment (14). In contrast to single-gene expression analysis, the genome-wide approach also allows for identification of coordinated transcriptional changes in functional groups of regulatory genes within metabolic and signaling pathways. Recent studies of differential gen...