Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
No abstract
No abstract
The measurement of the Yarkovsky effect on near-Earth asteroids (NEAs) is common practice in orbit determination today, and the number of detections will increase with the developments of new and more accurate telescopic surveys. However, the process of finding new detections and identifying spurious ones is not yet automated, and it often relies on personal judgment. We aim to introduce a more automated procedure that can search for NEA candidates to measure the Yarkovsky effect, and that can identify spurious detections. The expected semi-major axis drift on an NEA caused by the Yarkovsky effect was computed with a Monte Carlo method on a statistical model of the physical parameters of the asteroid that relies on the most recent NEA population models and data. The expected drift was used to select candidates in which the Yarkovsky effect might be detected, according to the current knowledge of their orbit and the length of their observational arc. Then, a nongravitational acceleration along the transverse direction was estimated through orbit determination for each candidate. If the detected acceleration was statistically significant, we performed a statistical test to determine whether it was compatible with the Yarkovsky effect model. Finally, we determined the dependence on an isolated tracklet. Among the known NEAs, our procedure automatically found 348 detections of the Yarkovsky effect that were accepted. The results are overall compatible with the predicted trend with the the inverse of the diameter, and the procedure appears to be efficient in identifying and rejecting spurious detections. This algorithm is now adopted by the ESA NEO Coordination Centre to periodically update the catalogue of NEAs with a measurable Yarkovsky effect, and the results are automatically posted on the web portal.
Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing. However, these “dark comets” display no evidence of comae in archival images, which are the defining feature of cometary activity. Here, we report detections of nongravitational accelerations on seven additional objects classified as inactive (doubling the population) that could also be explainable by asymmetric mass loss. A detailed search of archival survey and targeted data rendered no detection of dust activity in any of these objects in individual or stacked images. We calculate dust production limits of ∼ 10, 0.1 , and 0.1 kg s − 1 for 1998 FR 11 , 2001 ME 1 , and 2003 RM with these data, indicating little or no dust surrounding the objects during the observations. This set of dark comets reveals the delineation between two distinct populations: larger, “outer” dark comets on eccentric orbits that are end members of a continuum in activity level of comets, and smaller, “inner” dark comets on near-circular orbits that could signify a different different population. These objects may trace various stages in the life cycle of a previously undetected, but potentially numerous, volatile-rich population that may have provided essential material to the Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.