1974
DOI: 10.1137/0711029
|View full text |Cite
|
Sign up to set email alerts
|

Second Derivative Multistep Methods for Stiff Ordinary Differential Equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
165
0
4

Year Published

1976
1976
2014
2014

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 225 publications
(169 citation statements)
references
References 5 publications
0
165
0
4
Order By: Relevance
“…En la segunda mitad de la década de los 70, autores como Enright y Henrici, propusieron una serie de esquemas implícitos no lineales multipaso multiderivada de orden Q con tamaño de paso uniforme, con ciertas ventajas teóricas y prácticas para el tratamiento de sistemas de ecuaciones diferenciales ordinarias (ver [8] con continuidad en trabajos como [13]). Para este trabajo, se estudiaron los esquemas conocidos como "fórmulas de segundo orden" con el objetivo de validar una "familia" de métodos eficientes para el tratamiento de la rigidez.…”
Section: Estrategia Combinadaunclassified
“…En la segunda mitad de la década de los 70, autores como Enright y Henrici, propusieron una serie de esquemas implícitos no lineales multipaso multiderivada de orden Q con tamaño de paso uniforme, con ciertas ventajas teóricas y prácticas para el tratamiento de sistemas de ecuaciones diferenciales ordinarias (ver [8] con continuidad en trabajos como [13]). Para este trabajo, se estudiaron los esquemas conocidos como "fórmulas de segundo orden" con el objetivo de validar una "familia" de métodos eficientes para el tratamiento de la rigidez.…”
Section: Estrategia Combinadaunclassified
“…For the sake of comparison, in Appendix A we include the details of the truncation error and stability of the stiff formulae used by Gear. Table 3 Details of Chebyshev approximation formulae CHEB2 and CHEB4 Table 4 Coefficients of formulae FMPD50 Modifier polynomial C(x) = V¡L0c¡xl, c1 = -1.0 Also, at the suggestion of the referee, we present in Appendix B the coefficients of the conventional representation of the formulae CHEBl, CHEB2, CHEB3, CHEB4, Kutta formulae, a variable-order method based on the second derivative multistep formulae developed by Enright (1974) and a fourth-order method based on the trapezoidal rule with extrapolation developed by Lindberg (1971). The main conclusion of this study is that generally the methods based on Runge-Kutta formulae are unreliable (except for solving linear problems).…”
Section: Figurementioning
confidence: 99%
“…(3.7)]. In addition, the present paper explores the relationship between the blended formulas of Skeel and Kong [12] and the second derivative methods of Enright [3] when Nordsieck representation is used. We also discuss some advantages of the polynomial formulation.…”
mentioning
confidence: 99%
“…Enright [4] presents another set of second derivative formulas which are stiffly stable up to order 7. The first set of Enright's formulas has been implemented by Enright [3], Sacks-Davis [9], [10], and Addison [1].…”
mentioning
confidence: 99%