This paper is devoted to the consensus problems for a fractional-order multiagent system (FOMAS) with double integral and time delay, the dynamics of which are double-integrator fractional-order model, where there are two state variables in each agent. The consensus problems are investigated for two types of the double-integrator FOMAS with time delay: the double-integrator FOMAS with time delay whose network topology is undirected topology and the double-integrator FOMAS with time delay whose network topology is directed topology with a spanning tree in this paper. Based on graph theory, Laplace transform, and frequency-domain theory of the fractional-order operator, two maximum tolerable delays are obtained to ensure that the two types of the doubleintegrator FOMAS with time delay can asymptotically reach consensus. Furthermore, it is proven that the results are also suitable for integer-order dynamical model. Finally, the relationship between the speed of convergence and time delay is revealed, and simulation results are presented as a proof of concept.