This paper presents a practical and straightforward control strategy for robotic manipulators with unknown dynamics to achieve prescribed tracking performance, which has implementation advantages compared with previous work. In particular, an improved extended state observer (ESO) synthesized with a continuously differentiable friction model and time-varying gains is presented to estimate system states and unknown dynamics. This ESO outperforms the conventional ones in dealing with friction mutations while avoiding peaking estimation values in the initial stage. By combining the prescribed performance function and the proposed ESO, an independent joint control scheme is proposed for a robotic manipulator to keep the tracking error within a predefined performance bound based only on position measurements. The effectiveness of the proposed control scheme is verified by comparative simulation and experimental results on a six-degrees-of-freedom robotic manipulator with active disturbance rejection controller and PID methods.