This paper discusses a statistical second-order two-scale (SSOTS) analysis and computation for a heat conduction problem with a radiation boundary condition in random porous materials. Firstly, the microscopic configuration for the structure with random distribution is briefly characterized. Secondly, the SSOTS formulae for computing the heat transfer problem are derived successively by means of the construction way for each cell. Then, the statistical prediction algorithm based on the proposed two-scale model is described in detail. Finally, some numerical experiments are proposed, which show that the SSOTS method developed in this paper is effective for predicting the heat transfer performance of porous materials and demonstrating its significant applications in actual engineering computation.