Magnetic reconnection can power bright and rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high resolution (5376 × 2304 × 2304 cells) generalrelativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, non-axisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highlymagnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet's magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A * observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in mass accretion rate during the flare, and the resulting low-density magnetosphere make it easier for very high energy photons produced by reconnection-accelerated particles to escape. The extreme resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare.