This study investigates the dynamics of various particles within the plasma sheath, focusing on the influence of secondary emissions from charged dust particles. The research concentrates on backscattered electron emission (BEE), inelastic reflection emission (IRE) and true-secondary electron emission (TEE) as key contributors to the behaviour of dust particles within the plasma sheath. Employing the semi-empirical model of Furman and Pivi (F-P model), the study defines the total emission of secondary electrons (EES), comprising these three types. The analysis aims to enhance our understanding of the complex interplay between secondary emission phenomena and the dynamics of charged particles within the plasma sheath, contributing valuable insights to the field. Furthermore, a comparative study has been conducted between the results obtained from the emission of secondary electrons according to the Sternglass theory and the emission of secondary electrons obtained using the F-P model. It is observed that the secondary electron emission (SEE) from the dust, based on the F-P model, demonstrates more pronounced effects on the sheath characteristics, particularly when considering lower values of the superextensive electron parameter ‘
$q$
’.