Diamond is an excellent substrate for many sensing and electronic applications because of its outstanding stability in biological and aqueous environments. When the diamond surface is H-terminated, it can be covalently modified with organic alkenes using wet photochemical methods that are surface-mediated and initiated by the ejection of electrons from the diamond. To develop a better understanding of the photochemical reaction mechanism, we examine the effect of applying an electrical bias to the diamond samples during the photochemical reaction. Applying a 1 V potential between two diamond electrodes significantly increases the rate of functionalization of the negative electrode. Cyclic voltammetry and electrochemical impedance measurements show that the 1 V potential induces strong downward band-bending within the diamond film of the negative electrode. At higher voltages a Faradaic current is observed, with no further acceleration of the functionalization rate. We attribute the bias-dependent changes in rate to a field effect, in which the applied potential induces a strong downward band-bending on the negative electrode and facilitates the ejection of electrons into the adjacent fluid of reactant organic alkenes. We also demonstrate the ability to directly photopattern the surface with reactant molecules on length scales of <25 microm, the smallest we have measured, using simple photomasking techniques.