Das Heidelberger Ionenstrahl-Therapiezentrum (HIT) stellt Protonen-, Helium- und Kohlenstoff-Ionenstrahlen unterschiedlicher Energie und Intensität für die Krebsbehandlung und Sauerstoff-Ionenstrahlen für Experimente zur Verfügung. Der hierfür verwendete Beschleuniger ist darüber hinaus in der Lage auch Ionenstrahlintensitäten unterhalb der für Therapien verwendeten bereitzustellen. Allerdings ist das derzeit installierte Strahldiagnosesystems nicht in der Lage, das Strahlprofil bei solchen geringen Intensitäten (< 10^5 Ionen/s) zu messen. Dabei existieren mögliche medizinische Anwendung für diese niederintensiven Ionen-strahlen, wie beispielsweise eine neuartige und potentiell klinisch vorteilhafte Bildgebung: die Ionenradiographie. Eine essentielle Voraussetzung für diese und andere Anwendungen ist ein System zur Überwachung von Ionenstrahlen niedriger Intensität. Ein solches System wurde im Rahmen dieser Arbeit konzipiert, realisiert, getestet und optimiert. Das Funktionsprinzip basiert auf szintillierenden Fasern, insbesondere solchen mit erhöhter Strahlungshärte für die Möglichkeit einer dauerhaften Platzierung im Therapiestrahl. Ein diese Fasern durchlaufendes Ion regt den darin enthaltenen Szintillator durch Stoßprozesse kurzzeitig an. Die dabei deponierte Energie wird anschließend in Form von Photonen wieder emittiert. Silizium-Photomultiplier sind an den Enden der Fasern montiert und wandeln die Photonensignale in verstärkte elektrische Impulse um. Diese Impulse werden von einer neuartigen und dedizierten Ausleseelektronik aufgezeichnet und verarbeitet. Ein Prototypaufbau, bestehend aus den genannten Teilen, wurde im Strahl getestet und kann das transversale Strahlprofil erfolgreich im Intensitätsbereich von 10^7 Ionen/s bis hinunter zu 10^2 Ionen/s aufzeichnen. Darüber hinaus konnte, durch die erfolgreiche Ankunftszeitmessung von einzelnen Ionen bis zu Intensitäten von 5*10^4 Ionen/s, ein Machbarkeitsnachweis für die Messung der Spur von einzelnen Teilchen erbracht werden.