Inclusion of statistical knowledge of the primary user (PU) channel usage had shown to be beneficial in dynamic spectrum access. Motivated by this fact, this paper investigated the importance of collecting and using statistics on neighboring secondary users (SUs) in selecting channels in addition to the knowledge of PU channel usage. The paper assumed that PU traffic characteristics of the channels are included in the radio environment map in the form of probabilistic suffix trees, which is a sequence predictor based on Markov property. In the proposed method, an intelligent sequence hopping-based common control channel and a carrier sense multiple access (CSMA)/collision avoidance (CA)-based medium access control (MAC) protocol were introduced. As shown in the paper, selecting channels using statistics of both the neighboring SUs and PUs reduced the number of packet collisions compared to a scheme which only uses PU statistics. Furthermore, the simulation results showed that the scheme proposed had better throughput performance with respect to both the random channel selection scheme and the scheme which only uses PU statistics while having less training complexity.