Security is a critical element to the existing Internet of Things (IoT) deployment, where any user may actively or passively attack the content sharing of others reusing the same channel. As most smart devices are carried by human, we may leverage their owners' social trust to avoid being intercepted by untrusted users, which conforms to the Social Internet of Things (SIoT) paradigm. In this paper, we propose a secure content sharing (SCS) scheme to strike the trade-off between security and quality of experience (QoE) by exploring the social trust. Firstly, to dynamically extract the social trust, the random walk strategy is employed for prediction based on the proposed "User-Content-Social Group" graph which models users' preference over time. Given the social trust value, we propose a hierarchical game model to decouple the optimization problem into two subproblems: user pairing and channel selection. More specifically, the user pairing sub-problem is formulated as a matching subgame with peer effect, and the embedded rotation-swap matching algorithm can accommodate the dynamics caused by mutual interference. The second sub-problem can be formulated as a secure channel selection sub-game with the directed hypergraph being game space, which is proved to be an exact potential game. Then, we design an uncoupled-user concurrent learning algorithm (UUCL) to search for the optimal pure Nash equilibrium, and thereby the global optimum of this sub-game is achieved. Finally, simulation results generated on realistic social dataset verify that our proposed scheme can notably enhance the security without sacrificing users' QoE. Index Terms-Social Internet of Things, directed hypergraph, game theory, machine learning.