2017
DOI: 10.3389/fcimb.2017.00318
|View full text |Cite
|
Sign up to set email alerts
|

Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus

Abstract: Although the potential contribution of the human gastrointestinal (GI) tract microbiome to human health, aging, and disease is becoming increasingly acknowledged, the molecular mechanics and signaling pathways of just how this is accomplished is not well-understood. Major bacterial species of the GI tract, such as the abundant Gram-negative bacilli Bacteroides fragilis (B. fragilis) and Escherichia coli (E. coli), secrete a remarkably complex array of pro-inflammatory neurotoxins which, when released from the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

3
326
0

Year Published

2017
2017
2022
2022

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 314 publications
(329 citation statements)
references
References 82 publications
(174 reference statements)
3
326
0
Order By: Relevance
“…Of further related interest are the recent observations: (i) that the increased abundance of gram-negative GI tract bacteria such as B. fragilis in AD patients appears to result in increased generation and translocation of LPS and other Bacteroides-derived neurotoxins from the GI tract into the systemic circulation, which in turn may contribute to AD neuropathology through the release of pro-inflammatory cytokines, systemic inflammation, an increase in GI-tract or BBB permeability or other AD-relevant pathogenic mechanisms [9,[29][30][31][32], and (ii) that an increase in Bacteroidetes in the GI tract is also associated with Parkinson's disease (PD; [33]) and with sporadic AD hippocampus and neocortex, two anatomical regions targeted by the AD process [6,[34][35][36]. Importantly, while only the inflammatory potential of LPS towards primary human neuronal-glial (HNG) co-cultures have been studied and quantified by the induction of the pro-inflammatory NFkB p50/p65 complex, Bacteroidetes species are capable of secreting an unusually complex array of highly lethal neurotoxins including amyloids, sncRNAs and endotoxins which, when released from the confines of the healthy GI tract, are systemically pathogenic and can be highly detrimental to the homeostatic function of human CNS neurons [15].…”
Section: Bacteroidetes and Bacterioides Fragilis Abundance And Prolifmentioning
confidence: 99%
See 4 more Smart Citations
“…Of further related interest are the recent observations: (i) that the increased abundance of gram-negative GI tract bacteria such as B. fragilis in AD patients appears to result in increased generation and translocation of LPS and other Bacteroides-derived neurotoxins from the GI tract into the systemic circulation, which in turn may contribute to AD neuropathology through the release of pro-inflammatory cytokines, systemic inflammation, an increase in GI-tract or BBB permeability or other AD-relevant pathogenic mechanisms [9,[29][30][31][32], and (ii) that an increase in Bacteroidetes in the GI tract is also associated with Parkinson's disease (PD; [33]) and with sporadic AD hippocampus and neocortex, two anatomical regions targeted by the AD process [6,[34][35][36]. Importantly, while only the inflammatory potential of LPS towards primary human neuronal-glial (HNG) co-cultures have been studied and quantified by the induction of the pro-inflammatory NFkB p50/p65 complex, Bacteroidetes species are capable of secreting an unusually complex array of highly lethal neurotoxins including amyloids, sncRNAs and endotoxins which, when released from the confines of the healthy GI tract, are systemically pathogenic and can be highly detrimental to the homeostatic function of human CNS neurons [15].…”
Section: Bacteroidetes and Bacterioides Fragilis Abundance And Prolifmentioning
confidence: 99%
“…Recently work from several independent groups has further described the presence of intact bacteria, bacterial-derived nucleic acid sequences and/or bacterial-derived neurotoxins such as a highly pro-inflammatory LPS that is associated with neuronal parenchyma and in particular the neuronal nuclei of anatomical regions of the ADaffected brain exhibiting characteristic neuropathology [1,9,28,29,[34][35][36][37][38][39]. Interestingly, the close association of bacterial LPS with neuronal nuclei may prevent the efficient export of messenger RNA (mRNA) from a highly active neuronal genome resulting in the down-regulation of gene expression in AD as is widely observed [6,15]. The strikingly large and unexpected bacterial loads of GI-tract-derived bacteria or their neurotoxic exudates within AD tissues are strongly suspected to upset the efficient operation of these normally highly metabolically active repositories of genetic information.…”
Section: Bacterial Nucleic Acid Sequences In Cns Compartmentsmentioning
confidence: 99%
See 3 more Smart Citations