“…recently reported: (i) that RNA sequencing of the V4 region of the 16S rRNA gene in control (n=25) and AD (n=25) patients indicated that sequences representing a total of 4.8 million sequence reads [mean ± one standard deviation (SD) of ~96,000 ± 32,000 reads/participant] were clustered into operational taxonomic units (OTUs; an operational definition used to classify groups of closely related individuals) at 97% similarity [3,5]; (ii) that the final OTU dataset for the control and AD groups consisted of 972 OTUs classified into 95 genera, 46 families, 24 orders, 17 classes and 9 phyla (5); (iii) that there are about ~1000 bacterial species in a typical healthy human GI tract microbiome with a 'GI tract microbial core' of the genus Bacteroides and Firmicutes predominating, and with Proteobacteria, Verrumicrobia, Actinobacteria, Fusobacteria and Cyanobacteria making up the remainder [3,5,6,[12][13][14]; (iv) that at least 13 of 95 microbial genera examined exhibit differential abundance between AD and age-matched control populations [4][5][6]12]; (v) that there are consistent trends observed between relative GI tract bacterial abundance and CSF biomarkers of AD neuropathology [12,15]; (vi) that 16S rRNA next generation sequencing analysis has identified multiple microbial-derived nucleic acids in the AD brain, some of which are known to have pathogenic potential [9]; (vii) that remarkably, the abundance and complexity of microbial populations or their exudates in the GI tract is an approximate reflection of CNS microbial complexity, including microbiome-derived nucleic acid sequences and Gram negative-derived neurotoxins of the GI tract microbiome, such as lipopolysaccharide (LPS; [6,9,[15][16][17][18]); and (viii) that there is a decrease in richness and diversity of GI tract bacteria in AD compared to age-matched controls, a finding that parallels results observed in other GI, vascular or neurological conditions linked to GI tract microbiome alterations, including those associated with obesity, diabetes, inflammatory bowel disease, systemic inflammation and Parkinson's disease [9,[19][20][21][22]. Related to the points above, overall the GI tract microbiome of AD patients was found to exhibit hig...…”