Quantitative echosounders operating at multiple frequencies (e.g., 18, 38, 70, 120, 200, 333, and 710 kHz) are often used to observe fish and zooplankton and identify their species. At frequencies above 100 kHz, the absorption attenuation increases rapidly and decreases the signal-to-noise ratio (SNR). Also, incomplete compensation for the attenuation may result in measurement error. This paper addresses the effects of the attenuation and noise on high frequency measurements of acoustic backscatter from fish. It is shown that measurements of a fish with target strength of −40 dB at 200 m depth are limited by SNR to frequencies up to about 100 kHz. Above 100 kHz, absorption coefficients must be matched to local environmental conditions.