Background: Despite the vast antigen disparity between donor and recipient red blood cells (RBCs), only 2%-6% of transfusion patients mount an alloantibody response. Recently, RBC antigen density has been proposed as one of the factors that can influence alloimmunization, however, there has been no characterization of the role of antigen density along with RBC dose in primary and secondary immunization. Study Design and Methods: To generate RBCs that express distinct antigen copy numbers, different quantities of hen egg lysozyme (HEL) were coupled to murine RBCs. The HEL-RBCs were subsequently transfused into recipient mice at different RBC doses and their HEL-specific IgM, IgG, and IgG subclass response was evaluated. Results: Productive immune responses could be generated through a high copy number antigen transfused at low RBC doses or a low copy number transfused at high RBC doses. Further, primary but submaximal humoral immunization predominantly induced the IgG2b and IgG3 subclasses. In contrast, a maximal primary immunization or a secondary immunization induced all four IgG subclasses.Discussion: Our results confirm the existence of an antigen threshold for productive immune responses but indicate that a high antigen copy number alone might not be enough to induce a response, but rather a combination of both antigen copy number and cell dosage may determine the outcome of immunization. Further, this study provides a proof of concept that the IgG subclass composition can be an indicator of the level of RBC alloimmunization as well as discern between primary and secondary immunization at least in this murine model.Abbreviations: ABC, antibody binding capacity; ANOVA, analysis of variance; BSA, bovine serum albumin; ELISA, enzyme-linked immunosorbent assay; FMH, fetomaternal hemorrhage; GPA, glycophorin A; GPB, glycophorin B; HDFN, hemolytic disease of the fetus and newborn; HEL, hen egg lysozyme; hGPA, human glycophorin A antigen; HOD, recombinant antigen comprised of hen egg lysozyme linked with ovalbumin peptide and human duffy protein;