The Industrial Internet of Things (IIoT) holds significant potential for improving efficiency, quality, and flexibility. In decentralized systems, there are no trust-based centralized authentication techniques, which are unsuitable for distributed networks or subnets, as they have a single point of failure. However, in a decentralized system, more emphasis is needed on trust management, which presents significant challenges in ensuring security and trust in industrial devices and applications. To address these issues, industrial blockchain has the potential to make use of trustless and transparent technologies for devices, applications, and systems. By using a distributed ledger, blockchains can track devices and their data exchanges, improving relationships between trading partners, and proving the supply chain. In this paper, we propose a model for cross-domain authentication between the blockchain-based infrastructure and industrial centralized networks outside the blockchain to ensure secure communication in industrial environments. Our model enables cross authentication for different sub-networks with different protocols or authentication methods while maintaining the transparency provided by the blockchain. The core concept is to build a bridge of trust that enables secure communication between different domains in the IIoT ecosystem. Our proposed model enables devices and applications in different domains to establish secure and trusted communication channels through the use of blockchain technology, providing an efficient and secure way to exchange data within the IIoT ecosystem. Our study presents a decentralized cross-domain authentication mechanism for field devices, which includes enhancements to the standard authentication system. To validate the feasibility of our approach, we developed a prototype and assessed its performance in a real-world industrial scenario. By improving the security and efficiency in industrial settings, this mechanism has the potential to inspire this important area.