The routing protocol is considered the backbone of network communication. However, mobility and bandwidth availability make optimizing broadcast message flooding a problem in an Optimized Link State Routing (OLSR)-based mobile wireless network. The selection of Multi-Point Relays (MPRs) has lately been proposed as a potential approach that has the added benefit of eliminating duplicate re-transmissions in VANET networks. Wingsuit Flying Search (WFS) is one of the swarm intelligent metaheuristic algorithms, it enables one to find the minimum number of MPR. In this study, a novel methodology based on (WFS) is called WS-OLSR (Wingsuit Search-OLSR). The (WS-OLSR) is investigated to enhance the existing MPR-based solution, arguing that considering a cost function as a further decision measure will effectively compute minimum MPR nodes that give the maximum coverage area possible. The enhanced MPR selection powered by (WFS) algorithm leads to decreasing MPR count required to cover 95% of mobile nodes, increasing throughput , and decreasing topology control which mitigates broadcasting storm phenomenon in VANETs.