“…[12] Rank-1 IR (%) DET (FNIR vs. FPIR) (%) FNIR @ FPIR = {0, 0.1, 1} (%) [13] ROC (FRR vs. FAR, plus EER) (%) [14] TAR @ FAR = {1, 0.1, 0.01, 0.001} (%) ROC (TAR vs. FAR) [15] [16] {TP, FP, TN, FN} @ FPR = 0.001 [17] FNMR and FMR (%) ≈ [18] EER DET (Miss vs. False Alarm prob.) (%) ≈ [19] Accuracy (%) [20] EER (%) [21] Recognition rate (%) [22] Accuracy (%) DET (FRR vs. FAR, plus EER) (%) [23] AUC (%), EER (%), TPR (%), TAR @ FAR = 0.1 (%), Rank-1 DIR @ FAR = 1 (%) [24] EER (%), GAR @ FAR (%) [25] FAR and FRR (%) [26] EER (%) [27] EER ROC (1 -FNMR vs. FMR) [28] TAR @ FAR (%) [29] IR (%) @ Rank = {1, 10, 50}, ROC (VR vs. FAR) (%) ≈ Accuracy (%), Verification Recognition @ FAR = 0.1 (%), Rank-1 DIR @ FAR = 1 (%), Own metrics: TIR, MIR, FIR (%) [30] Accuracy, FAR, FRR, EER (%) [31] 1 -FNMR (TMR) @ FMR = 10 −3 (or 0.1%) ROC (1 -FNMR vs. FMR) NN-learned [37], [38] EER (%), GAR @ FAR = {0, 1} (%) [39] EER (%), GAR @ FAR = 1 (%) ROC (GAR vs. FAR) [40] EER (%), GAR @ FAR = {0, 0.01, 0.1} (%) ROC (GAR vs. FAR) [41] EER (%), GAR @ FAR = 0 (%) [42] EER (%), GAR @ FAR (%) [43] FAR and FRR (%) [44] EER [45] EER (%), GAR @ FAR = 0.01 (%) ROC (GAR vs. FAR) (%) [46] Accuracy (%), GAR @ FAR = 0 (%) ROC (TAR vs. FAR) [47] EER (%), GAR @ FAR = 0.1 (%), Maximum Average Precision [48] GAR @ FAR = 0.1 (%) [49] EER (%), FNMR @ FMR = 0.1 (%) DET (FNMR vs. FMR) [50] EER (%) [51] EER (%) ROC (TPR vs. FPR) of the "other" systems (i.e., those using unprotected templates or templates protected by other BTP methods) were deliber-ately/directly compared (e.g., in a table, on the same plot, or conceptually). On the other hand, an implicit/pa...…”