The automotive sector has seen a dramatic transition due to rapid technological advancement. Network connection has improved, enabling the transfer of the cars' technologies from being fully machine- to software-controlled. Controller area network (CAN) bus protocol manages network for autonomous vehicles. However, due to the intricacy of data and traffic patterns that facilitate unauthorised access to a can bus and many sorts of assaults, the autonomous vehicle network still has security flaws as well as vulnerabilities. This research proposes novel technique in cyber attack detection in autonomous vehicle networks enhanced data transmission based optimization and routing technique. Here the autonomous vehicle network optimal data transmission has been carried out using energy aware lagrangian multipliers based optimal data transmission. The cyber attack detection has been carried out using fuzzy q-learning based heuristic routing protocol. The experimental results has been carried out based on optimal data transmission and attack detection in terms of throughput of 95%, PDR of 94%, End-end delay of 46%, energy efficiency of 96%, network lifetime of 95%, attack detection rate of 88%.