Consortium blockchains have attracted considerable interest from academia and industry due to their low-cost installation and maintenance. However, typical consortium blockchains can be easily attacked by colluding block validators because of the limited number of miners in the systems. To address this problem, in this paper, we propose a novel block validation framework to enhance blockchain security. In the framework, the block validations are assisted and implemented by various lightweight nodes, e.g., edge devices, in addition to the typical blockchain miners. This improves the blockchain security but can cause an increased block validation delay and, thereby, reduced blockchain throughput. To tackle this challenge, we propose an effective method to select lightweight nodes based on their computing powers to maximize the blockchain throughput, and prove the uniqueness of the optimal nodes selection strategy. Security analysis and simulation results from the deployed consortium blockchain platform show that the proposed framework achieves higher throughput and security than the existing consortium blockchain models.