SecureQNN: Introducing a Privacy-Preserving Framework for QNNs at the Deep Edge
Miguel Costa,
Tiago Gomes,
Jorge Cabral
et al.
Abstract:Recent concerns about real-time inference and data privacy are making Machine Learning (ML) shift to the edge. However, training efficient ML models require large-scale datasets not available for typical ML clients. Consequently, the training is usually delegated to specific Service Providers (SP), which are now worried to deploy proprietary ML models on untrusted edge devices. A natural solution to increase the privacy and integrity of ML models comes from Trusted Execution Environments (TEEs), which provide … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.