Securities Quantitative Trading Strategy Based on Deep Learning of Industrial Internet of Things
Yi Tang,
Xiaoning Wang,
Wenyan Wang
Abstract:By combing the shortcomings of the current quantitative securities trading, a new deep reinforcement learning modeling method is proposed to improve the abstraction of state, action and reward function; on the basis of the traditional DQN algorithm, a deep reinforcement learning algorithm model of RB_DRL is proposed. By improving the network structure and connection mode, and redefining the loss function of the network, the improved model performs well in many groups of comparative experiments. A securities qu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.